MQ135.h Beispiel Sketch zum Verstehen der Bibliothek für die CO2 Messung

5sens Modul

Anbei ein kleiner Sketch zum Verstehen des Bibliothek vom G. Krocker zur Anzeige der relevanten Werte des MQ135 und Verwendung der Temperatur-Kompensation. Der MQ135 Sensor wird verwendet um die Luftgüte, hier speziell das CO2 zu messen. Mit den Werten ist eine Eichung des Sensors auf den mittleren CO2 Wert in der Atmosphäre (ca. 400 ppm) möglich (rzeroc). Einen kompletten Sketch findet man hier Vier Sensoren Sketch

Hilfreich:

https://www.grower.ch/forum/threads/wir-basteln-ein-arduino-co2-messgeraet.89083/

https://hackaday.io/project/3475-sniffing-trinket

 

#include "MQ135.h"
#include <DHT.h>  

#define HUMIDITY_SENSOR_DIGITAL_PIN 4 // DHT22 an PIN4

MQ135 gasSensor = MQ135(0); //GAS Sensor PIN A0

DHT dht;



void setup() {
   Serial.begin(115200);
    dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);
    
}

void loop() {
{
  float h = dht.getHumidity();
  float t = dht.getTemperature();
 
  float rzero = gasSensor.getRZero();
  float rzeroc = gasSensor.getCorrectedRZero( t, h);
   
  float ppm = gasSensor.getPPM();
  float ppmc = gasSensor.getCorrectedPPM(t, h);
 
  Serial.println(t);
  Serial.println(h);   
  Serial.println(rzero);
  Serial.println(rzeroc);
  Serial.println(ppm);
  Serial.println(ppmc);
  Serial.println();

  delay(3000);
 
}
}

 

 

Gasverbrauch messen mit Arduino FHEM und MYSENSORS ohne Raspberry

Gaszähler mit Impulsgeber

Leider gibt es keine fertige Lösung obwohl es einfach scheint. Bisher habe ich nur Ergebnisse mit Firmata für Raspberry und Netzwerkschnittstelle gefunden. Das ist mir zu aufwändig. Es gibt für Arduino mysensors Sketche, die die Türkontakte (Reedkontakte) erkennen. Die Reedkontakte lassen sich am Zähler anbringen und reagieren auf den magnetischen Punkt am Zahlenrad. Das wäre der Hardware-Ansatz. Also muss ich mich bei Gelegenheit an die Software machen.

Smarthome Arduino MYSENSORS FHEM Sketch CO2 Bewegung Temperatur Feuchte

FHEM Abbildung Sensoren Feuchte Temp CO2 Bewegung

Allegmein

Der Sketch stammt von Karl-Heinz Wind und wurde von mir angepasst. Er enthält die Berechnung und Anzeige der Sensoren für CO2 (MQ135), Feuchte, Temperatur und Bewegung. Es wurden ausschließlich typische MYSENSORS-Bauteile verwendet. Sollten bestimmte Bibliotheken fehlen, kann ich die gerne noch bereitstellen.

 

Sketch

#include <SPI.h>
#include <MySensor.h>

#include <Wire.h>

#include <DHT.h>
#include <MQ135.h>

#include „Timer.h“

//—————————————————————————-
//unsigned long SLEEP_TIME = 10000; //Sleep time between reports (in milliseconds)
#define DIGITAL_INPUT_SENSOR 3   // The digital input you attached your motion sensor.  (Only 2 and 3 generates interrupt!)
#define INTERRUPT DIGITAL_INPUT_SENSOR-3 // Usually the interrupt = pin -2 (on uno/nano anyway)
#define CHILD_ID 1   // Id of the sensor child

//—————————————————————————–
// Timer
Timer timer;
#define TEMP_UPDATE_INTERVAL 30000

//—————————————————————————–
// DHT22
#define CHILD_ID_TEMP 2
#define CHILD_ID_HUM 3
#define HUMIDITY_SENSOR_DIGITAL_PIN 4

DHT dht;
float lastTemp;
float lastHum;
MyMessage msgHum(CHILD_ID_HUM, V_HUM);
MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);

//—————————————————————————–
// MQ135
#define CHILD_ID_CO2_CORRECTED 0
#define CHILD_ID_CO2 1
#define CHILD_ID_R0 4
#define CO2_SENSOR_ANALOG_PIN 0
#define CO2_SENSOR_BUFFER_SIZE 3

/// Calibration resistance at atmospheric CO2 level
// Buero 21Grad Regen
#define RZERO 300.0
#define EEPROM_R0 0

MQ135 gasSensor = MQ135(CO2_SENSOR_ANALOG_PIN, RZERO);
int lastC02;
int lastCO2Corrected;
float lastR0;

//RunningAverage lastCO2Values(CO2_SENSOR_BUFFER_SIZE);

//—————————————————————————–
// MySensor
MySensor gw;
MyMessage msgCO2Corrected(CHILD_ID_CO2_CORRECTED, V_VAR1);
MyMessage msgCO2(CHILD_ID_CO2, V_VAR1);
MyMessage msgR0(CHILD_ID_R0, V_VAR1);
MyMessage msg(CHILD_ID, V_TRIPPED);

//—————————————————————————–
void setup()
{
Serial.begin(115200);
dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);

gw.begin(incomingMessage, AUTO, true);
gw.sendSketchInfo(„CO2 Sensor MQ-135“, „1.3“);
gw.present(CHILD_ID_CO2_CORRECTED, S_AIR_QUALITY);
gw.present(CHILD_ID_CO2, S_AIR_QUALITY);
gw.present(CHILD_ID_TEMP, S_TEMP);
gw.present(CHILD_ID_HUM, S_HUM);
gw.present(CHILD_ID_R0, S_CUSTOM);

gw.sendSketchInfo(„Motion Sensor“, „1.0“);
pinMode(DIGITAL_INPUT_SENSOR, INPUT);
gw.present(CHILD_ID, S_MOTION);

uint8_t R02 = gw.loadState(EEPROM_R0);

// get R0 from EEPROM
float R0 = R02 * 2;
if (R0 > 1.0 && R0 < 400.0)
{
Serial.print(F(„Setting R0 from EEPROM: „));
}
else
{
Serial.print(F(„Setting default R0: „));
R0 = RZERO;
}

Serial.print(R0);
Serial.println(F(„“));

gasSensor.setR0(R0);
//float ppm = gasSensor.getPPM();
//lastCO2Values.fillValue(ppm, CO2_SENSOR_BUFFER_SIZE);

//int tickEvent1 =
timer.every(TEMP_UPDATE_INTERVAL, timerHandler);

}

bool DHT22Changed(bool waitMinimumSamplingPeriod = true)
{
bool changed = false;

if (waitMinimumSamplingPeriod)
{
delay(dht.getMinimumSamplingPeriod());
}

float temperature = dht.getTemperature();
if (isnan(temperature))
{
Serial.println(F(„Failed reading temperature from DHT“));
}
else if (temperature != lastTemp)
{
lastTemp = temperature;
Serial.print(„T: „);
Serial.println(temperature);
changed = true;
}

float humidity = dht.getHumidity();
if (isnan(humidity))
{
Serial.println(F(„Failed reading humidity from DHT“));
}
else if (humidity != lastHum)
{
lastHum = humidity;
Serial.print(F(„H: „));
Serial.println(humidity);
changed = true;
}

return changed;
}

bool MQ135Changed(float t, float h)
{
bool changed = false;

lastR0 = gasSensor.getRZero();
Serial.print(F(„R0: „));
Serial.println(lastR0);

{
float ppm = gasSensor.getPPM();

Serial.print(F(„CO2 ppm: „));
Serial.print(ppm);

//lastCO2Values.addValue(ppm);
//ppm = lastCO2Values.getAverage();

//Serial.print(“ average: „);
//Serial.print(ppm);

int roundedPpm = (int)ppm;
Serial.print(F(“ –> „));
Serial.println(roundedPpm);

if (roundedPpm != lastC02)
{
lastC02 = roundedPpm;
changed = true;
}
}

{
float ppm = gasSensor.getCorrectedPPM(t, h);

Serial.print(F(„CO2 corrected ppm: „));
Serial.print(ppm);

int roundedPpm = (int)ppm;
Serial.print(F(“ –> „));
Serial.println(roundedPpm);

if (roundedPpm != lastCO2Corrected)
{
lastCO2Corrected = roundedPpm;
changed = true;
}
}
// Read digital motion value
boolean tripped = digitalRead(DIGITAL_INPUT_SENSOR) == HIGH;

Serial.println(tripped);
gw.send(msg.set(tripped?“1″:“0“));  // Send tripped value to gw

// Sleep until interrupt comes in on motion sensor. Send update every two minute.
//gw.sleep(INTERRUPT,CHANGE, SLEEP_TIME);

return changed;
}

void timerHandler()
{
bool humidityChanged = DHT22Changed(false);
bool airQualityChanged = MQ135Changed(lastTemp, lastHum);

if (humidityChanged || airQualityChanged)
{
gw.send(msgTemp.set(lastTemp, 1));
gw.send(msgHum.set(lastHum, 1));
gw.send(msgCO2Corrected.set(lastCO2Corrected));
gw.send(msgCO2.set(lastC02));
gw.send(msgR0.set(lastR0, 2));
}
}

void loop()
{
gw.process();

timer.update();

}

void incomingMessage(const MyMessage& message)
{
Serial.println(F(„Incoming Message:“));

if (message.isAck())
{
Serial.println(F(„This is an ack from gateway“));
}

uint8_t sensor = message.sensor;
if (sensor == CHILD_ID_R0)
{
float R0 = message.getFloat();

Serial.print(F(„Incoming R0: „));
Serial.print(R0);
Serial.println(F(„“));

gw.saveState(EEPROM_R0, (uint8_t)(R0/2));
gasSensor.setR0(R0);
gw.send(msgR0.set(R0, 2));
}
}