Zeitaufwand für die Privatheit im Netz

Kann man es eigentlich auf Dauer aushalten, seine Privatheit-Auferlegungen durchzuhalten? Es benötigt viel Zeit und Nerven. Ich könnte fast den ganzen Tag dran sitzen. Immer hat man das Gefühl, dass es noch offene oder fehlerhafte Konfigurationen zu korrigieren gibt. Es ist schwer einen Schlussstrich zu finden. Den gibt es ja eh nicht. Wahrscheinlich ist es am Besten für jeden Tag einen Zeitraum einzuhalten.

Multi (5) Sensor für smarthome Arduino FHEM MYSENSORS

Einleitung

Heute veröffentliche ich die Version 0.11. des Sensor-Sketches. Änderung ist die Korrektur des Sketchteils für den Bewegungssensors.

 Sensoren

HC-SR501 (Motion)

DHT-22 (Temperature/Humidity)

MQ135 (Airquality)

MH-Z19 (CO2) –> demnächst

 

Entscheidung MQ135 / MH-Z19(14)

Die Entscheidung welcher CO2 Wert verwendet wird ist für den MH-Z14(19) gefallen. Dieser liefert deutlich plausiblere Werte. So ist  eine Übereinstimmung beider Kurven ist grob gegeben. Aber der MQ135 reagiert eben dennoch auf eine Menge andere Gase, so dass ich ihn vorerst weiter verwende und im Sketch belasse. Zukünftig teste ich mit dem MH-Z14 der bei Lieferung durch den MH-Z19 ersetzt und auf die Platine integriert wird.

 

//Sens4Sketch (Motion, Temperature, Humidity, CO2)

//v0.xx MH-Z19 integration
//v0.11 Motion corrected
//v0.10 ---- installation co2 value specification outside----under construction
//v0.9 Autoset r0 off, vaule < 400 possible!!!!
//v0.8 Corr. Lib von rstoica (set r0, correction) impl
//v0.7 set r0 to eeprom
//v0.6 SetR0-Button
//v0.5 Motion
//v0.4 autosetr0 if co2<400
//v0.3 api 2.0, redesign
//v0.2 CorrectedRZero basis for calculating r0
//G. Krocker K.-H. Wind et. al. ++++JH
//Caution: The Sketch erorder an amended mq135.h Library

//#define MY_DEBUG    // Enables debug messages in the serial log
#define MY_RADIO_NRF24
#define MY_REPEATER_FEATURE  // Enables repeater functionality for a radio node
#include <SPI.h>
#include <MySensors.h>
#include <DHT.h>
#include <MQ135.h>
//----------------------------------------------------------------------------
// Timer
unsigned long SLEEP_TIME = 30*1000; // Sleep time between reads (in milliseconds)
//-----------------------------------------------------------------------------
//MOTION
#define DIGITAL_INPUT_SENSOR 3   // The digital input you attached your motion sensor.  (Only 2 and 3 generates interrupt!)
#define INTERRUPT DIGITAL_INPUT_SENSOR-3 // Usually the interrupt = pin -2 (on uno/nano anyway)
#define CHILD_ID_MOTION 16   // Id of the sensor child
MyMessage msgMotion(CHILD_ID_MOTION, V_TRIPPED);
//-----------------------------------------------------------------------------
// DHT22
#define CHILD_ID_HUM 0
#define CHILD_ID_TEMP 1
#define HUMIDITY_SENSOR_DIGITAL_PIN 4
DHT dht;
float lastTemp;
float lastHum;
boolean metric = true; 
MyMessage msgHum(CHILD_ID_HUM, V_HUM);
MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
//-----------------------------------------------------------------------------
// MQ135
#define CHILD_ID_CO2C 24
#define CHILD_ID_CO2 25
#define CHILD_ID_R0C 26
#define CHILD_ID_R0 27
#define EEPROM_R0C 0
int C02;
int CO2C;
float R0;
float R0C;
float R02;
MQ135 gasSensor = MQ135(0);//PIN0 
MyMessage msgCO2C(CHILD_ID_CO2C, V_VAR1);
MyMessage msgCO2(CHILD_ID_CO2, V_VAR1);
MyMessage msgR0C(CHILD_ID_R0C, V_VAR1);
MyMessage msgR0(CHILD_ID_R0, V_VAR1);
//-----------------------------------------------------------------------------
void setup() {
//--------------------------------------------------------------------- 
 //R0C aus EEPROM sonst 55
dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);
pinMode(DIGITAL_INPUT_SENSOR, INPUT);
uint8_t R02 = loadState(EEPROM_R0C);
// get R0C from EEPROM
float R0C = R02 * 2;
if (R0C > 1.0 && R0C < 500.0)
{
Serial.print(F("Setting R0 from EEPROM: "));
}
else
{
Serial.print(F("Setting default R0C: "));
R0C = 50;
}
Serial.print(R0C);
Serial.println(F(""));
gasSensor.setRZero(R0C);
}
//-----------------------------------------------------------------------------
void presentation(){
sendSketchInfo("Sens4", "v0.7");
present(CHILD_ID_TEMP, S_TEMP);
present(CHILD_ID_HUM, S_HUM);
present(CHILD_ID_CO2C, S_CUSTOM);
present(CHILD_ID_CO2, S_CUSTOM);
present(CHILD_ID_R0C, S_CUSTOM);
present(CHILD_ID_R0, S_CUSTOM);
present(CHILD_ID_MOTION, S_MOTION);
}
//-----------------------------------------------------------------------------



void loop(){



//-----------------------------------------------------------------------------
//TEMP_FEUCHTE 

wait(dht.getMinimumSamplingPeriod());// TheoL
  float temperature = dht.getTemperature();
  if (isnan(temperature)) {
      Serial.println("Failed reading temperature from DHT");
  } else if (temperature != lastTemp) {
    lastTemp = temperature;
    if (!metric) {
      temperature = dht.toFahrenheit(temperature);
    }
   send(msgTemp.set(temperature, 1));
    Serial.print("T: ");
    Serial.println(temperature);
  }
  
  float humidity = dht.getHumidity();
  if (isnan(humidity)) {
      Serial.println("Failed reading humidity from DHT");
  } else if (humidity != lastHum) {
      lastHum = humidity;
      send(msgHum.set(humidity, 1));
      Serial.print("H: ");
      Serial.println(humidity);
  }
//-----------------------------------------------------------------------------  
//CO2
  float R0 = gasSensor.getRZero();
  float R0C = gasSensor.getCorrectedRZero(temperature, humidity);
  float CO2 = gasSensor.getPPM();
  float CO2C = gasSensor.getCorrectedPPM(temperature, humidity);
  
  Serial.print("R0: "); 
  Serial.println(R0);
  send(msgR0.set(R0,1));

  Serial.print("R0C: ");
  Serial.println(R0C);
  send(msgR0C.set(R0C,1));

  Serial.print("CO2: ");
  Serial.println(CO2);
  send(msgCO2.set(CO2,1));

  Serial.print("CO2C: ");
  Serial.println(CO2C);
  send(msgCO2C.set(CO2C,1));
  
  Serial.println();
//-----------------------------------------------------------------------------
//Read digital motion value
boolean tripped = digitalRead(DIGITAL_INPUT_SENSOR) == HIGH;
 Serial.print("Motion: ");
Serial.println(tripped);
send(msgMotion.set(tripped?"1":"0"));  
//-----------------------------------------------------------------------------
wait(SLEEP_TIME); //sleep/wait for: sleepTime // byTheo: Changed
}
//-----------------------------------------------------------------------------
//incomingMessage
void receive(const MyMessage& message){
 Serial.println(F("Incoming Message:"));

if (message.isAck())
{
Serial.println(F("This is an ack from gateway"));
}

uint8_t sensor = message.sensor;
if (sensor == CHILD_ID_R0C)
{
float R0C = message.getFloat();

Serial.print(F("Incoming R0C: "));
Serial.print(R0C);
Serial.println(F(""));

saveState(EEPROM_R0C, (uint8_t)(R0C/2));
gasSensor.setRZero(R0C);
send(msgR0.set(R0C, 2));
}
}
//-----------------------------------------------------------------------------

 

Dallas DS18B20 Temperaturmessung MYSENSORS API 2.0 und FHEM

Überwachung der Wassertemperatur im Aussentank

Hier nun die 2.1 Version zur API 2.0. Basis ist der Sketch von MYSENSORS.ORG. Über den Debug-Modus habe ich herausgefunden, dass von FHEM keine Node-ID vergeben wurde. Dies habe ich dann mit #define MY_NODE_ID fest eingestellt. Damit lief dann alles. Im Original-Sketch wird der Arduino noch für die Übertragungszeit schlafen gelegt. Die Funktion habe ich erst mal deaktiviert. Vielleicht kümmere ich mich später darum. Ich verwende den Sketch, um mit einem wasserdichten DS18B20 die Temperatur im Außenwassertank zu überwachen.

/**
 * The MySensors Arduino library handles the wireless radio link and protocol
 * between your home built sensors/actuators and HA controller of choice.
 * The sensors forms a self healing radio network with optional repeaters. Each
 * repeater and gateway builds a routing tables in EEPROM which keeps track of the
 * network topology allowing messages to be routed to nodes.
 *
 * Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
 * Copyright (C) 2013-2015 Sensnology AB
 * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
 *
 * Documentation: http://www.mysensors.org
 * Support Forum: http://forum.mysensors.org
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 *******************************
 *
 * DESCRIPTION
 *
 * Example sketch showing how to send in DS1820B OneWire temperature readings back to the controller
 * http://www.mysensors.org/build/temp
 */

//v2.1 Anpassung auf API 2.0 von JH
#define MY_RADIO_NRF24
#define MY_DEBUG    // Enables debug messages in the serial log 
#define MY_NODE_ID 42 // Sets a static id for a node
#include <MySensors.h>  
#include <SPI.h>
#include <DallasTemperature.h>
#include <OneWire.h>

#define COMPARE_TEMP 1 // Send temperature only if changed? 1 = Yes 0 = No

#define ONE_WIRE_BUS 4 // Pin where dallase sensor is connected 
#define MAX_ATTACHED_DS18B20 16
unsigned long SLEEP_TIME = 3000; // Sleep time between reads (in milliseconds)
OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
DallasTemperature sensors(&oneWire); // Pass the oneWire reference to Dallas Temperature. 

float lastTemperature[MAX_ATTACHED_DS18B20];
int numSensors=0;
boolean receivedConfig = false;
boolean metric = true; 
// Initialize temperature message
MyMessage msg(0,V_TEMP);

void setup()  
{ 
sensors.setResolution(TEMP_12_BIT); // Genauigkeit auf 12-Bit setzen
  
}
void presentation(){
  
  // Startup up the OneWire library
  sensors.begin();
  // requestTemperatures() will not block current thread
  sensors.setWaitForConversion(false);

  // Startup and initialize MySensors library. Set callback for incoming messages. 
  

  // Send the sketch version information to the gateway and Controller
  sendSketchInfo("Temperature Sensor", "2.1");

  // Fetch the number of attached temperature sensors  
  numSensors = sensors.getDeviceCount();

  // Present all sensors to controller
  for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {   
  present(i, S_TEMP);
  }
}


void loop()     
{     
  

  // Fetch temperatures from Dallas sensors
  sensors.requestTemperatures();

  // query conversion time and sleep until conversion completed
  //int16_t conversionTime = sensors.millisToWaitForConversion(sensors.getResolution());
  // sleep() call can be replaced by wait() call if node need to process incoming messages (or if node is repeater)
  //sleep(conversionTime);

  // Read temperatures and send them to controller 
  for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {
 
    // Fetch and round temperature to one decimal
    float temperature = static_cast<float>(static_cast<int>((getConfig().isMetric?sensors.getTempCByIndex(i):sensors.getTempFByIndex(i)) * 10.)) / 10.;
 
    // Only send data if temperature has changed and no error
    #if COMPARE_TEMP == 1
    if (lastTemperature[i] != temperature && temperature != -127.00 && temperature != 85.00) {
    #else
    if (temperature != -127.00 && temperature != 85.00) {
    #endif
 
      // Send in the new temperature
      send(msg.setSensor(i).set(temperature,2));
      // Save new temperatures for next compare
      lastTemperature[i]=temperature;
    }
  }
  sleep(SLEEP_TIME);
}

 

MYSENSORS Zählermodul für Gaszähler API 2.0

Hier schon einmal der Sketch. Mit ihm erzeuge ich die Zählimpulse in MYSENSORS. In FHEM verwende ich dann das Modul Gascalculator zur weiteren Berechnung. Als Kontakt verwende ich einen einfach Reedkontakt.

/**
 * The MySensors Arduino library handles the wireless radio link and protocol
 * between your home built sensors/actuators and HA controller of choice.
 * The sensors forms a self healing radio network with optional repeaters. Each
 * repeater and gateway builds a routing tables in EEPROM which keeps track of the
 * network topology allowing messages to be routed to nodes.
 *
 * Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
 * Copyright (C) 2013-2015 Sensnology AB
 * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
 *
 * Documentation: http://www.mysensors.org
 * Support Forum: http://forum.mysensors.org
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 *******************************
 *
 * DESCRIPTION
 *
 * Simple binary switch example 
 * Connect button or door/window reed switch between 
 * digitial I/O pin 3 (BUTTON_PIN below) and GND.
 * http://www.mysensors.org/build/binary
 */
#define MY_RADIO_NRF24

#include <MySensors.h>
#include <SPI.h>
#include <Bounce2.h>

#define CHILD_ID 3
#define BUTTON_PIN  3  // Arduino Digital I/O pin for button/reed switch

 Bounce debouncer = Bounce(); 
int oldValue=-1;

// Change to V_LIGHT if you use S_LIGHT in presentation below
MyMessage msg(CHILD_ID,V_TRIPPED);

void setup()  
{  

  
  // Setup the button
  pinMode(BUTTON_PIN,INPUT);
  // Activate internal pull-up
  digitalWrite(BUTTON_PIN,HIGH);
  
  // After setting up the button, setup debouncer
  debouncer.attach(BUTTON_PIN);
  debouncer.interval(5);
}
void presentation(){
sendSketchInfo("DOOR", "v0.1");
  // Register binary input sensor to gw (they will be created as child devices)
  // You can use S_DOOR, S_MOTION or S_LIGHT here depending on your usage. 
  // If S_LIGHT is used, remember to update variable type you send in. See "msg" above.
 present(CHILD_ID, S_DOOR);  
}


//  Check if digital input has changed and send in new value
void loop() 
{
 
  debouncer.update();
  // Get the update value
  int value = debouncer.read();
 
  if (value != oldValue) {
     // Send in the new value
     send(msg.set(value==HIGH ? 1 : 0));
     oldValue = value;
  }
} 

https://smarthome.gleisnetze.de

Sensoren4Sketch

  • 0.8 Verwendung der korrigierten Lib von RSTOIKA
  • Der R0 Wert kann automatisch zum Setzen in FHEM verwendet werde. Hiermit wird ein Button oben angezeigt. attr CO2_SZ setReading_R0 textField<br>
  • Einbrennzeit und Stabilisierung abwarten
  • Kalibrierung im Freien bei Windstille
  • Redesign MySensors 2.0
  • Grundwert R0Cor wird gesetzt, wenn CO2 < 390
  • Spezielle Lib ist für den Kalibierung – Button notwendig
  • EEPROM Speicherung R0Cor

MQ135lib.tar

//Sens4Sketch (Motion, Temperature, Humidity, CO2)

//v0.8 Corr. Lib von rstoica (set r0, correction) impl
//v0.7 set r0 to eeprom
//v0.6 SetR0-Button
//v0.5 Motion
//v0.4 autosetr0 if co2<400
//v0.3 api 2.0, redesign
//v0.2 CorrectedRZero basis for calculating r0
//G. Krocker K.-H. Wind et. al. ++++JH
//Caution: The Sketch erorder an amended mq135.h Library

//#define MY_DEBUG    // Enables debug messages in the serial log
#define MY_RADIO_NRF24
#include <SPI.h>
#include <MySensors.h>
#include <DHT.h>
#include <MQ135.h>
//----------------------------------------------------------------------------
// Timer
unsigned long SLEEP_TIME = 15*1000; // Sleep time between reads (in milliseconds)
//-----------------------------------------------------------------------------
//MOTION
#define DIGITAL_INPUT_SENSOR 3   // The digital input you attached your motion sensor.  (Only 2 and 3 generates interrupt!)
#define INTERRUPT DIGITAL_INPUT_SENSOR-3 // Usually the interrupt = pin -2 (on uno/nano anyway)
#define CHILD_ID_MOTION 8   // Id of the sensor child
MyMessage msgMotion(CHILD_ID_MOTION, S_MOTION);
//-----------------------------------------------------------------------------
// DHT22
#define CHILD_ID_HUM 0
#define CHILD_ID_TEMP 1
#define HUMIDITY_SENSOR_DIGITAL_PIN 4
DHT dht;
float lastTemp;
float lastHum;
boolean metric = true; 
MyMessage msgHum(CHILD_ID_HUM, V_HUM);
MyMessage msgTemp(CHILD_ID_TEMP, V_TEMP);
//-----------------------------------------------------------------------------
// MQ135
#define CHILD_ID_CO2C 24
#define CHILD_ID_CO2 25
#define CHILD_ID_R0C 26
#define CHILD_ID_R0 27
#define EEPROM_R0C 0
int C02;
int CO2C;
float R0;
float R0C;
float R02;
MQ135 gasSensor = MQ135(0);//PIN0 
MyMessage msgCO2C(CHILD_ID_CO2C, V_VAR1);
MyMessage msgCO2(CHILD_ID_CO2, V_VAR1);
MyMessage msgR0C(CHILD_ID_R0C, V_VAR1);
MyMessage msgR0(CHILD_ID_R0, V_VAR1);
//-----------------------------------------------------------------------------
void setup() {
//--------------------------------------------------------------------- 
 //R0C aus EEPROM sonst 55
dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);
pinMode(DIGITAL_INPUT_SENSOR, INPUT);
uint8_t R02 = loadState(EEPROM_R0C);
// get R0C from EEPROM
float R0C = R02 * 2;
if (R0C > 1.0 && R0C < 500.0)
{
Serial.print(F("Setting R0 from EEPROM: "));
}
else
{
Serial.print(F("Setting default R0C: "));
R0C = 50;
}
Serial.print(R0C);
Serial.println(F(""));
gasSensor.setRZero(R0C);
}
//-----------------------------------------------------------------------------
void presentation(){
sendSketchInfo("Sens4", "v0.7");
present(CHILD_ID_TEMP, S_TEMP);
present(CHILD_ID_HUM, S_HUM);
present(CHILD_ID_CO2C, S_CUSTOM);
present(CHILD_ID_CO2, S_CUSTOM);
present(CHILD_ID_R0C, S_CUSTOM);
present(CHILD_ID_R0, S_CUSTOM);
present(CHILD_ID_MOTION, S_MOTION);
}
//-----------------------------------------------------------------------------



void loop(){



//-----------------------------------------------------------------------------
//TEMP_FEUCHTE 

wait(dht.getMinimumSamplingPeriod());// TheoL
  float temperature = dht.getTemperature();
  if (isnan(temperature)) {
      Serial.println("Failed reading temperature from DHT");
  } else if (temperature != lastTemp) {
    lastTemp = temperature;
    if (!metric) {
      temperature = dht.toFahrenheit(temperature);
    }
   send(msgTemp.set(temperature, 1));
    Serial.print("T: ");
    Serial.println(temperature);
  }
  
  float humidity = dht.getHumidity();
  if (isnan(humidity)) {
      Serial.println("Failed reading humidity from DHT");
  } else if (humidity != lastHum) {
      lastHum = humidity;
      send(msgHum.set(humidity, 1));
      Serial.print("H: ");
      Serial.println(humidity);
  }
//-----------------------------------------------------------------------------  
//CO2
  float R0 = gasSensor.getRZero();
  float R0C = gasSensor.getCorrectedRZero(temperature, humidity);
  float CO2 = gasSensor.getPPM();
  float CO2C = gasSensor.getCorrectedPPM(temperature, humidity);
  
  Serial.print("R0: "); 
  Serial.println(R0);
  send(msgR0.set(R0,1));

  Serial.print("R0C: ");
  Serial.println(R0C);
  send(msgR0C.set(R0C,1));

  Serial.print("CO2: ");
  Serial.println(CO2);
  send(msgCO2.set(CO2,1));

  Serial.print("CO2C: ");
  Serial.println(CO2C);
  send(msgCO2C.set(CO2C,1));
  
  Serial.println();
// Grundwert CO2 < 400 ppm dann setze R0C in Lib
if (CO2C < 420)
{
  saveState(EEPROM_R0C, (uint8_t)(R0C/2));
  gasSensor.setRZero(R0C);
  send(msgR0C.set(R0C, 2));
  Serial.print(F("CO2 < 420: R0 gesetzt "));
}
//-----------------------------------------------------------------------------
//Read digital motion value
boolean tripped = digitalRead(DIGITAL_INPUT_SENSOR) == HIGH;
Serial.println(tripped);
send(msgMotion.set(tripped?"1":"0"));  
//-----------------------------------------------------------------------------
wait(SLEEP_TIME); //sleep for: sleepTime // byTheo: Changed
}
//-----------------------------------------------------------------------------
//incomingMessage
void receive(const MyMessage& message){
 Serial.println(F("Incoming Message:"));

if (message.isAck())
{
Serial.println(F("This is an ack from gateway"));
}

uint8_t sensor = message.sensor;
if (sensor == CHILD_ID_R0C)
{
float R0C = message.getFloat();

Serial.print(F("Incoming R0C: "));
Serial.print(R0C);
Serial.println(F(""));

saveState(EEPROM_R0C, (uint8_t)(R0C/2));
gasSensor.setRZero(R0C);
send(msgR0.set(R0C, 2));
}
}
//-----------------------------------------------------------------------------

 

btrfs – Backups durchführen mit btrbk

Wiederherstellung bei intaktem System mit btrfs

Weil ich mich geirrt habe 😉  konnte zum zweiten Mal die Wiederherstellung mit btrfs für meinen Linux-Server testen. Dazu verwende ich den Zusatz btrbk für btrfs. Hiermit lassen sich die Intervalle und das automatische Bereinigen alter Backups sehr komfortabel konfigurieren. Dabei entstandene Erfahrungen dazu habe ich hier zusammengetragen.

Insoweit geht man exakt wie beschrieben vor.

First, pick a backup to be restored:

btrbk list backup

From the list, pick the backup you want to restore. Let’s say it’s /mnt/btr_backup/data.20150101.

If the broken subvolume is still present, move it away:

mv /mnt/btr_pool/data /mnt/btr_pool/data.BROKEN

Now restore the backup:

btrfs send /mnt/btr_backup/data.20150101 | btrfs receive /mnt/btr_pool/ btrfs subvolume snapshot /mnt/btr_pool/data.20150101 /mnt/btr_pool/data btrfs subvolume delete /mnt/btr_pool/data.20150101

Dabei könnte ein Stolperstein sein dass generell die erzeugten Backups von BTRBK!!!! nur read-only sind. Zweck dessen ist die Sicherheit und Integrität des Backups (siehe FAQ).

Jenes so erzeugte Subvolume transferiert man dann einfach wieder auf die Festplatte (btrfs send ). Danach ist schon ein Booten möglich allerdings nur als Lese-Filesytem. Somit ist noch nach Anleitung ein Subvolume vom transferierten Backup zu erzeugen weil das nämlich read-write-fähig ist. Nachdem wird einfach das readonly-Backup gelöscht. Sobald das erledigt ist kann man wieder korrekt mit einem sauberen System arbeiten.

Wiederherstellung bei formatierter Festplatte mit Live-System

Sofern man die Festplatte formatieren muss geht man auch wie oben vor. Aber fehlt jedoch der Bootloader. Doch den installiert man nach Anleitung (für Ubuntu chroot-Methode) einfach neu. Außer dem hatten sich auf dem Server die Laufwerksbezeichnungen (UUIDs) in der /etc/fstab geändert. In sofern erhielt ich eine Fehlermeldung dass /home nicht bereit oder vorhanden sei. Nachdem Korrigieren war dann wieder alles schick.

 

Restore an intact system with btrfs

Because I was wrong 😉 could test for the second time to restore with btrfs for my Linux server. For this I use the additional btrbk for btrfs. This can be used the intervals and automatic cleanup of old backups very easily configure. Here resulting experiences to which I have gathered here.

In that regard, it is exactly as described before.

It could be a stumbling block that generally the generated backups of BTRBK !!!! Only read-only is. Whose purpose is the security and integrity of the backup.

That Subvolume thus produced is then transferred easily back to the hard disk (btrfs send …). After already booting is possible, but only as a read-Filesytem. Therefore even after guidance is a subvolume from transferred Backup to create because for that is read-write capability. After simply the readonly backup deleted and you get to work correctly with a clean system again.

Recovering from formatted hard disk with live system

If you have to format the hard drive, proceed as well as up. However it lacks the bootloader. Those are reinstalled after guidance (for Ubuntu chroot method). But the drive names (UUID) in the / etc / fstab had nevertheless changed. In this respect I received an error message stating that / not home willing or available was. After correct everything was back chic.

MQ135.h Beispiel Sketch zum Verstehen der Bibliothek für die CO2 Messung

Anbei ein kleiner Sketch zum Verstehen des Bibliothek vom G. Krocker zur Anzeige der relevanten Werte des MQ135 und Verwendung der Temperatur-Kompensation. Der MQ135 Sensor wird verwendet um die Luftgüte, hier speziell das CO2 zu messen. Mit den Werten ist eine Eichung des Sensors auf den mittleren CO2 Wert in der Atmosphäre (ca. 400 ppm) möglich (rzeroc). Einen kompletten Sketch findet man hier Vier Sensoren Sketch

Hilfreich:

https://www.grower.ch/forum/threads/wir-basteln-ein-arduino-co2-messgeraet.89083/

https://hackaday.io/project/3475-sniffing-trinket

 

#include "MQ135.h"
#include <DHT.h>  

#define HUMIDITY_SENSOR_DIGITAL_PIN 4 // DHT22 an PIN4

MQ135 gasSensor = MQ135(0); //GAS Sensor PIN A0

DHT dht;



void setup() {
   Serial.begin(115200);
    dht.setup(HUMIDITY_SENSOR_DIGITAL_PIN);
    
}

void loop() {
{
  float h = dht.getHumidity();
  float t = dht.getTemperature();
 
  float rzero = gasSensor.getRZero();
  float rzeroc = gasSensor.getCorrectedRZero( t, h);
   
  float ppm = gasSensor.getPPM();
  float ppmc = gasSensor.getCorrectedPPM(t, h);
 
  Serial.println(t);
  Serial.println(h);   
  Serial.println(rzero);
  Serial.println(rzeroc);
  Serial.println(ppm);
  Serial.println(ppmc);
  Serial.println();

  delay(3000);
 
}
}

 

 

Gasverbrauch messen mit Arduino FHEM und MYSENSORS ohne Raspberry

Leider gibt es keine fertige Lösung obwohl es einfach scheint. Bisher habe ich nur Ergebnisse mit Firmata für Raspberry und Netzwerkschnittstelle gefunden. Das ist mir zu aufwändig. Es gibt für Arduino mysensors Sketche, die die Türkontakte (Reedkontakte) erkennen. Die Reedkontakte lassen sich am Zähler anbringen und reagieren auf den magnetischen Punkt am Zahlenrad. Das wäre der Hardware-Ansatz. Also muss ich mich bei Gelegenheit an die Software machen.